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Classical radiative electron capture by a proton 
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Abstract. Partial radiative capture cross sections for very low energy (< 100 eV) electrons 
and protons are calculated via the classical method of Fourier components. Comparisons 
of these cross sections are made with quantum mechanical calculations. 

1. Introduction 

The process of radiative electron capture by protons is important in interstellar H 11 
regions. In these nebulae surrounding very hot stars ionised hydrogen atoms are 
continuously recombining. The temperatures of these clouds are of the order of 
10 000 K and correspond to free-electron kinetic energies of about 1 eV. 

A quantum mechanical study of this process was recently reported by Fazio and 
Copeland (1985). Among other results reported were partial cross sections for the 
capture of these very low energy electrons. For any specified state of principal quantum 
number n and for energies greater than 15 eV recombination into s states is preferred 
and cross sections decrease with increasing angular momentum. At energies below 
15 eV, however, this 'normal' ordering changes. Recombination into s states is least 
preferred while states of higher angular momentum have greater cross sections. When 
plotted as a function of the kinetic energy of the incoming electron the cross section 
curves cross each other (see figure l), and total reversal occurs at lower energies for 
higher n. This crossing behaviour was thought to be due to specific relationships 
between the bound-excited and free-state radial wavefunctions and substantiating 
evidence, in the form of matrix elements and transition strengths, was presented. 

It is the purpose of this paper to examine the process of radiative electron capture- 
also known as radiative recombination-from a classical perspective in order to further 
substantiate the view that the curve crossings discussed above cannot be attributed to 
classical physics. 

The classical electron capture problem is treated by the method of Fourier com- 
ponents. The initial state of the free electron is described by a Keplerian orbit and 
the Fourier transform of the acceleration gives the frequency of the emitted radiation. 
For a historical perspective the reader is referred to Kramers (1923) where the state 
of the free electron is described by a parabolic orbit ( E  = l), the shortest distance 
between the electron and the nucleus is required to be 4 and the angular momentum 
mub is set equal to m. Calculations for cross section are performed in two approxima- 
t ions-one for high energy and one for low. 

In the treatment that follows the free electron is described by a hyperbolic orbit 
( E  > 1). This allows specification of the angular momentum, in addition to the energy 
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Figure 1. The quantum mechanical partial cross sections for radiative capture of an electron 
into all angular momentum states through n = 4. 

of the incoming electron. No energy approximations are made and calculations of the 
Fourier components are done numerically. 

2. Procedure 

An electron incident on a proton describes an orbit that is the shape of a conic section. 
If the electron is not bound to the proton the orbit is in the shape of a parabola or 
hyperbola. 

The formula relating eccentricity of the orbit ( E )  to the energy and angular momen- 
tum of the system is 

E = [ 1 + (2EL2/mK2)]1'2 (1) 
where E is the total energy of the system (in this case the kinetic energy of the incoming 
electron), L is the angular momentum (mub) ,  m is the reduced mass of the system 
and K is the square of e. 

The angle 6 locates the electron from the positive x axis and the position of the 
electron is given by 

P=L2r^ /mK(1+Eco~e) .  (2) 
When 6 = 0 the electron is at the point of closest approach and when the angle 
6 = Bo= cos-'(-l/s) the electron is infinitely far away (see figure 2). From the law of 
conservation of angular momentum: 

L = mr2 dO/dt 
where time t can be expressed as a function of the angular position 6. After a change 
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Figure 2. A hyperbolic orbit is presented. The electron is located by r and 0. The angle 
Bo locates the electron when it is infinitely far away and at the angle 0 = 0 the electron is 
at the point of closest approach. The angular momentum of the incoming electron is mub 
where b is the impact parameter. 

of variables where tan(8/2) is set equal to x, 

t =  a C f i 3 ( E 2 -  a, L~ 1)3/2 (%+In x;-x 1-1). 
Time t is zero at 8 = 0. Therefore, at t = -a the electron is located by the angle 
8,=cos-'(-l/E) or by x,=tan(8/2) and at t = c o  by -xo. The value of xo can be 
related to the eccentricity of the orbit: x, = ( ( E  + 1)/( E - 1))'I2. 

The acceleration of the electron, 

c i  = e2F/ mr2 

can be resolved into components parallel and perpendicular to the x axis: a l l  = a cos 8 
and a, = a sin 8. By writing the sine and cosine terms as functions of the variable x 
the components of acceleration can be written as 

a l l  = a (  1 - x2)/( 1 + x2) a ,=2ax/ (1+x2)  

where 

a = e2/ mr2 = e6( 1 + E cos e)2/ L~ 

a , ~ ~ ( 1  + x ~ ) ~  

The Fourier sine and cosine transforms can now be written: 

& ( w ) = ' I  a,sin(wt)dt=- 

- f i 4 ( ( a c ) 2 ( E  - l)2(x;-x2) - 

m 

?r -m 

and 

2h2c x~ dx (1 -x2)   COS(^^) m 

$ ( U )  ='I al l  cos(wt) d t  =- 
-m L2 I_, (1+x2)2 

It can be seen that as x -  xo ( e +  8,) the arguments of the sine and cosine functions 
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grow rapidly, yielding negligible contributions to the integral near xo. Hyperbolic and 
elliptical orbits of the same angular momenta (see equations (1) and ( 2 ) )  are strikingly 
similar when 0 < eo, especially when comparing more eccentric elliptical orbits ( E  + 1) 
with low energy hyperbolic orbits ( E  + 1 ) .  Thus, in the low energy region this classical 
approximation should yield fairly accurate results. 

The cross section formula for the radiative capture of an electron into a bound 
state described by principal quantum number n and angular momentum quantum 
number 1, in terms of these Fourier components, can now be derived. It is assumed 
that an electron will be captured into a state with principal quantum number n if its 
energy puts it in the range of - R y / ( n + + ) 2  and - R y / ( n  -+)’. Electromagnetic 
energy with a frequency interval dw will then be emitted. From the energy radiated 
per unit time (Jackson 1975, p 659) 

dl?/dt = 2 e 2 d .  d / 3 c 3  

it can be written that 

or in terms of the Fourier components as 

From this formula the relative amount of radiated energy which lies between w and 
w + dw can be identified as 

P ( w )  = W w ) * +  +(U)’]. 

The cross section for capture into a state of principal quantum number n is 

u , = 2 r r  qnrd r  low 
where the probability that a free electron of kinetic energy ke will be bound to the 
nth quantum state is qn: 

25 ra4 ACP(  w ) n 
a o L 2 ( n 2 k e +  R y ) ( 4 n 2 -  1)2’ q n  = 

The frequency of the emitted radiation is related to the bound state and the free-electron 
energy by 

This cross section formula is for capture into a state described by the principal 
quantum number n and the integration limits include all possible angular momenta 
of the incoming electron. With the assumption that electrons having angular momentum 
L = [ I (  1 + 1)]”2h are captured into states with angular momentum quantum number I 
if their initial values lie between 1 -f and l++ the partial cross section formula is written 

25 rr2a 5 hzC2 n 3 P( n, 1 )  d l  
ke(4n2 - 1)’(n2ke + R y )  1 ’ 

Unnr = 

P ( n ,  I )  is almost constant over the range of integration and little accuracy is lost 
by treating it as such; therefore, it can be brought outside the integral and the partial 
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Figure 3. The classical cross sections for the capture of an electron into all angular 
momentum states through n =4.  The curves K = 1 through 4 are total cross sections for 
the special case of a parabola. 

cross section formula (in units of Tu:) is 

The partial cross sections for capture into all angular momentum states through 
n = 4 are plotted in figure 3 along with the total cross sections for the special case of 
the parabolas that were calculated from Kramers' (1923) formulae. 

3. Discussion 

For very low kinetic energy electrons the total cross sections (2, unl = a,) calculated 
from this work agree with the total quantum mechanical cross sections and those 
calculated by Kramers (1923). At energies near 100 eV, however, the cross sections 
deviate by as much as 50% from the other two (which remain in agreement). This 
was not totally unexpected because electrons in hyperbolic orbits with large energies 
did not fall within the limits of the approximation. 

The classical cross section curves for different angular momenta 1 of the same 
principal quantum state do not cross each other-or even hint at such behaviour. At 
all energies, capture into the lowest angular momentum state is most probable and the 
probability of capture decreases with increasing angular momentum and/or energy. 

The best correlation between the quantum mechanical cross sections (see figure 1) 
and the classical cross sections (see figure 3) is for the ground state. For the excited 
states correspondence is good for higher angular momentum states but poor for the 
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low. This deviation was expected since the crossing of the quantum mechanical curves 
was thought to be due to the wave relationship between the lower angular momentum 
bound-excited states and the free states with one angular momentum unit more. The 
quantum mechanical cross sections are large if the initial free state wavefunction and 
final bound state wavefunction have a large overlap. This is true, in general, at low 
energies. As the kinetic energy of the free electron increases the free state wavefunction 
contracts; positive and negative contributions to the radial integral cancel causing the 
matrix elements to decrease in value. Thus, the matrix elements have a maximum 
absolute value at zero energy of the free electron and decrease as energy increases. 
This general behaviour is modified by including information on angular momentum. 
Low angular momentum wavefunctions have values near the origin, while states of 
higher angular momentum are excluded further and further from the origin. Since the 
bound state wavefunctions are localised around the origin-especially zero angular 
momentum states-and the free state is not, low angular momentum bound states and 
free states with larger angular momentum values will produce smaller overlaps. The 
value of this overlap will decrease with decreasing energy because the amplitude of 
the free state wavefunction increases more rapidly with r for low energies than for 
high (Bethe and Salpeter 1977). Thus, the general behaviour of the cross section is 
modified, the most pronounced effect being on the cross sections for capture into zero 
angular momentum states. The result is that the curves for zero angular momentum 
cross under the other quantum mechanical curves and ultimately the cross section 
curves reverse order completely. 

4. Conclusion 

In this paper the classical partial cross section curves for the radiative capture of a 
low energy electron by a proton were calculated. The method of Fourier components 
was employed and integration was done numerically. The classical partial cross section 
curves do not cross and correlation between the quantum mechanical and the classical 
cross sections is poorest for low angular momentum recombinations. Since it is these 
very recombinations that are responsible for the crossing of the quantum mechanical 
curves the explanation seems to depend on the wave relationship between the free and 
the bound state. Therefore, it can be concluded that the reversal of the order of the 
radiative recombination cross sections presente'd by Fazio and Copeland (1985) is a 
result of the wave nature of the system and can be explained only in the realm of 
quantum mechanics. 
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